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ABS'JSACT 

The theory expounded here is based Baiuly on that of F&eier, 
Gallop, Lock and Richmond* except that the coordinate system is 
attached to the actual trajectory instead of the particle tra- 
jectory* They are followed i£> their fortunate choice of eyubols, 
especially for the damping factors. 

£a& equations for the complex year are developed on the usual 
linear assumption and their solutions obtained* The dysssical 
stability of «b*01 i« dlacuaead* It is here pointed out that, 
for practical purposes, it is not essential that a shell be 
dynamically stable at all points of its trajectory. A reassuring 
comparison is made between the results of this theory and those 
of FGLR and Sellay and HcShaee. 

I 
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DSFIKITIOS OF OTCMBCLS 

&• Dynamical constants and variables* 
b. Geometric magnitudes and vectors- 
s. Aerodynamic forces. 
d» Damping factors* 

a* Dynamical constants and variables; 

A  .Axial moment of Inertia of the shell 

3  Tn&ssrc:- »*» wowAgt o? l»*5+i« 

m maae 

v  Velocity 

N  Spin of the shell about its longitudinal axis 

b. Geometric magnitudes and vectors; 

1, *,  r4d k - unit vectors pointing aiosg the directions 
of the x, y and z axes respectively* 

A the unit vector caving the direction of the axis of 
the shell* If the direction cosines of A are (, 
» and «, A » jfl + aj + ax* 

o the angle of yaw - the angle between the trajectory 
and the longitudinal axis of the shell* 

v   A x A^ the vector aagulag velocity of the axis or 
the shell* 

*feita 

=*2 

r/t 
i/t 

c* Aerodynamic forces; 

li   ?>mm  - the force acting on the projectile along the 
trajectory opposite to its direction of motion. 

M Overturning moment assumed to act in the plane of 
the yav and assumed to be proportional to sin o. 
Thus, M may be written as M - u sin B, where p 
is cfcllFd the moment co-factor. 

L Cross wind force - a force acting perpendicularly 
to the trajectory, in the plane of the yaw: 
assumed to be proportional to sin 8. 

itv   Tawing moment due to yawing - when a shell yaws, 
there is a torque exerted on It, the axis of 
which coincides witn the axis of ths yawing motion 
and exerts a sioment which opposes the yawing motion 
This momaut is called the yawing moment due to ys»ing 
and Is represented by Hw. 

Units 

»jf/t2 

«*2A2 

•f/t' 

*J?2A2 

• 



Unite 

*?/ 2 
K  Ma^iue force - corresponding to the cross v±ud   mf/t 

force, when a shell spins, there is a Magnus 
force acting on it, proportional to sin 8, but 
acting perpendicularly to the plane of the yav. 

J  Magnus moment - the moment of the Magnus force*   rof /t 

-2 / 2 
-AHP Rolling moment - the moa&ent that opposes the     znf /t 

W£T*^»  WA   VAM»  Cl l*J hi* 

* 
d.    Deuuplng factors  ; 

i     The rolling moment damping factor 

g     AH 
*   " All 

K  The cross wind force damping factor 

L 
R m 1 

mv sin o 

h  The yawing moment due to yaving damping factor 

h - - H/B 

X  The Magnus fores damping factor 

X      K 
" mr N sin 6 

7  The Magnus moment damping factor 

-T 
7 - AH sin 6 

¥ 
These damping factors all hare l/t for unit* 

all 

* 



Chapter I 

Motion with Simplified Force System* 

Tto simplify tits problem and to orlug out the essential pointB of the 
M   theox-y, we shall consider first a shall subject to a force system con- 
-j   slating only of the overturning moment, M, the drag, D, and a spin fentroy- 

Ing couple or rolling moment. We take 

w _    —fss * »•* — i> •»•*£! v 

c where ji is the moment co-factor and 8 is the angle of yaw. We assume the 
A magnitude of the rolling moment to be AH p where A is the axial moment of 
N inertia of the shell and H the spin* The axis of the torque AN f" is that 
p of the shell. 

Gravity#- the cross wind force, yawing assent due to yawing, etc., are 

Since there are no forces transverse to the trajectory, the trajectory 
is linear* Therefore a coordinate system with origin at the center of 

x   gravity of the shell, with its x axis pointing along the trajectory, with 
y   its y axis in a vertical plane, and the z a^is pointing to the right, while 
z   not Galilean with respect to translation, is Galilean so far as angular 

motions are concerned. See Figure 1. 
* 

Figure 1 

-   The unit vectors having the directions of the x, y, z axes are designated 
,   as i, J, k, respectiv^ly. (These vectors as well as all other vectors 
£  are written with heavy letters.) We define the relevant quantities. 

B      B = loomant of inertia about a transverse ex^B  through the center of 
gravity. 

A/.      A - unit vector in the direction of the axis of the shell. 

v      w » the resultant vector angular velocity of the longitudinal axis 
about a transverse axis through the center of gravity (also 
called the cross spin). 

H • total vector angular momentum of shell with respect to 0. 
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By re«son of the symmetry of revolution vtitch the shell is assumed to 
possess, the total angular racmantura is the sum of two components: 

(a) the component about the axis, *?hieh has tfc* direction A and 
is represented by the vector ANA., and 

(b) the component transverse to the axis, which is represented 
by the vector Bw. 

Tom rector cross spin v is equal in magnitude to A  and is perpendicular to 
A and A . V© thus have 

w - A x A . 

The total angular momentum, 

I - AHA. + B |~A x A ( . 

The vector equation of motion is that the rate of change of angular 

0  momentum, H, is equal to the Impressed vector couple, designated by 0. 

If we take N as variable we fixd that 

•     •       •      r*»   • ~i •• i 
H - ANA + AHA + B  A x A   + B [A x A J « 

•  • •    • 
The A x A term ia iero since A and A are parallel* Thus 

(1) E = AHA + AHA. + B f A x A | = G . 

On the present assumption, the vector couple 0 consists of two terms, the 
couple M and rolling scssnt AJJf"* .  Let us »e« how we may express them 
as vectors. 

** M is equal in magnitude to u sin & and the axis of the couple is 
obviously perpendicular to the trajectory and hence to the unit vector 1, 
and to the axis of the shell. 

r•  -i 
Consider the vector, \i x Aj ; this vector is, by definition of the 

vector product, perpendicular to 1 and A and has the magnitude sin o. 

Hence, the moment M is expressed as the vector, u ML s AJ • The rolling 
moment, AKT , hae by definition A as its axis and the moesnt Is assumed 
to be negative. Hence we represent it vectorlaliy as -AH p A* 

Heplacing 8 in the preceding equation by its two components, uji x A 
and -AH PA, the equation becomes *—    -* 

(la) H = AHA + AHA + B \  A x A~| - u | i x A | -AHP A ; 
—    4    L_   j 

this Is the vector equation of motion. 
-* Differentiation with respect to the time, t, is indicated by the superposed dot. 

o 
2 2 

**In ballistic notation, •••Kv.P'1 y • 

r9-   ^ 



It should be noted that since A is a unit vector, A is necessarily per- 
pendicular to A, while [A x XJ and jjl x XI are perpendicular to A by the 
definition of a vectov product. Hence, if we take the scalar product of A 
into equation (l), all the terns vanish except AN(A*A) and -ANf (A«JJ.>. From 
this 

AH « -A»T 
and 

Alia - -AN r A. 

By virtue of this, it is obvious that (la) may be written 

(1.01) AKa + B LA x AJ  - ji 11 1 x A I 

If the direction cosines of A with respect to the x. y, z axes are jf, m. and n, 

A » Ii + mj + nk 

A = jf i + ng + nk 
*• 

A • f4 •*• ag + nk 

and 

I A x A J - (jfl + mj + nk) x ( /i + aj + nk) . 

Upon performing the vector multiplication, remembering that 

i v 1 - 0, i x ,1 - k, Jii» -k, etc., we have 

A x A « (an - am) i + («/ - /£) J + (jfif ^ a?)k . 

For i x A, we have 

i x (/i + nqf + nk) • - nj * ak * 

Equation (i.O*) written out in full becomes 

(1.01X)        AN(jfi + aj + nk) + B j (an - n£)i + (nf - jfn)J + 

+ (fa - ajf)k  - u Q nj + aft  | . 

In this theory - the assumption is made that the yaw is small* If the 
yaw is email, then the i component, the magnitude of which is COP o, is 
always taken as unity, and therefore the i component is not involved in 
this theory* 

Since the 13 J and k components are independent, there are three 
equations, one for each component* We take the 4 &£d k components: 

(2) (j component)     ASk + B (njf - jfa) » - un, 

>{3) (k component)     AJJn + B (jfa - ejf) » + urn . 

i 
i 
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I  is equal in magnitude to cos 8 « 1 » ~ and jf sy. = 8 -88. 

Nov, m and n are of the order of 8* Hence, in neglecting rich, tents aa njf, 

v? are neglecting a term of the order of (88 - 8~ ft) in comparison vitta 8 

and in taking / • 1. we are neglecting a term of tbe order of 8 in compar- 

ison with unity.. We nov take {  » 1 and neglect the terns in (  . 

Equations (2) and (3) then become 

(2.1)       AHm - Bn - - mi 

(3*1)       AHn + BE • * [is . 

Multij'y (2.1) by i • -\-l     and then aubtraet from (5*1) with the 
result, 

A»(-im + n) + B(m + in) - u (m • in). 

2 
Since -(l) - -l(-l) » +1, the first term may be written -lAH(m + in) 

and the equation becomes 

CM        -iAH(m + in) + B(m + in) - u (m -r in). 

i)  We now substitute r\ for (m + in) and call TJ the complex yaw. 

The complex yaw TJ is represented on a plane perpendicular to the 

trajectory as indicated in Figure 2. 

&XJ s of /•«/$ m 

T 
_j» 2 

dX|S Of //>,»» 9//) »A/e-s 

Figure 2 

The axis of reals points upward in a vertical plane along the y axis 

and the axis of lmaglnarles points tc the right along1 the z axis. 

With i) substituted for m + in, (k)  becomes, upon division by B 

(**.!) rf-iaij-gii-O, 

0        if 0 is used tc represent AN/B. 

«5=      ^ 



To solve this equa+ion, it is convenient first to eliminate the f| 
term. Let us write it for future convenience in the form 

(k.2) if - IETJ - Ft) *= 0 . 
Ve nov make the substitution 

il - y exp 
t 
( 
i o 

§1 { Edt 

Upon differentiating once, ve have 

t 
1»7   «=? |i   (   Edt 'dt <ex* |i    J    Edt 

fl.     f    ...1 rr } 
y   exp   ^ x   \    jsat j Edt j   + y exp j = i   }    Edt (f i E) 

• ax© 
1 i» 

i 1     f     RHt. 2 1    — + £ i E y 

Hie second differentiation give<?; 

V- at {expj I1! Mt 
! 
1 

(y -r ^ iEy) + eacp | i \  Edt 
o dt*y        2 ' 

exp 

- exp 

| i|   Edt"j  f| i E(y * | IBy) * ? • ^ • ^H    . 

ii^Edtj[y:
+.(|lE + |iE)y+ (- \ E2 + f)yj       . 

Unon substituting for n, TJ, and TJ* in (U.2) it becomes 

exp iijEdt 
f\ 

4 [? + iEy + (- \ E2 + ^)yj - iE(y + | iEy) - fy ( 

- exp 
1 

|i(Edt      .      ?+(%   -F + |iE)y      .0 

and the equation for y is 

U-3) y + ( 
Ec 

P + | i E)y - o 



Upon substituting for JS end F their values as obtained from (**-«l) 
and for the present taking il  as constant, that is, neglecting E in (**-J}; 
we have 

(k.k) ?+(£-   - £)y - 0 . ^TT  B 

This may be written 

y+^.
2 fi.J 

if 

L 
2 

BQ 
— < x5/ 

il 
* - r i * * M L'-IJ 

designating ill - l/s by a,  we finally get 

fi. c 

(*.6> 

y • vjs0/ y - o . 

For convenience, following Kelley and Mc8hane , we rewrite (^«5) as 

y - q*y * y + (lqj'y a 0 

and make another substitution 

d lo" y  y 
r * 

dt    y 

From this 

<*.7) 

and (^-6) becomes 

2    2 
ry + ry-qy»0, from which 

2   2. 
r -»- r = q = 0 » 

If r is small in comparison with r, we should have two solutions 
for r in this equation, one nearly equal to +q, and the other nearly 
equal to -q. Hence let 

r = + q T £ • 

By substituting JLu (V»7), it appears that 

2        2   2 
+ q + £ + q • 2qc + €** - q •» 0, 

from which, if v^ neglect k  and € , 

t * - 2f* . and r • • q • wr • 2q '  -• •  £q 
•Keiley-kcShaue, BRL Report 446, 19^7"" 
*»Kelley-McShans> refer to; H. Jeffreys, Proc. London Math. Soe. (2), vol. 23 
(1923) p.428, aud G. Wentzel.. Zeitscbrift fur Physik. vol*38 (1926) p. 51S. 



4 

From the definition of r, 

rdt • <?.(log y) 

and 
t 
f rdt * loa y - log y , 
O ° 

t 
From this, log y • log y^ + \ rdt 

o 

and y-y0 e 

J rdt      C (+q - ^)dt 

yQ
e 

mus, the two solutions for +q and -q, respectively, are 

r*   > 
y - y, exp j  \   \q - gMdt 

2q' u 

V    •   V        <*YT» 

*       "2 "' 
<    Ttous, y.  and y2 are constants* 

and 

From (h,5)  and \k,6)  we have 

+q - + —ir 

-q 
lfio 

Furthermore 

2q = 210 o 

Since A and B are const-ant, 

2 <a • o> ' 

I 

jr • =  which we designate by - / , 

where jf is called the rolling moment damping factor* We have then, 

7 



substituting for q and q/2q, for **** two solutions 

I f (10a + Jf - f) at y = yx exp 

^"2 e*P L*I (~ iJto + ( - 2) at 

fl  $  "1 Recalling that r, • y exp ^ 1 j ftdt  and that the general solution 

(5) 

is the sum of the two solutions, we have 

Pl     P2 
TJ = i^ e  + Kg e 

where 

and 

io(i + c) + jf - 5 

In (5)> K, and K^, are arbitrary complex constants determined by the 

initial conditions. 

Interpretation of Solution 

For those who have nor, had experience in the field of complex quantities, 
an. interpretation of the solution (5) is offered. 

v 
Consider the series expansion of e~. 

1 + j  -r *£ + et<% 
Upon substituting ix f or y in this, we have 

_ix 2    5   h 
,  .   x  ix^  x , ix 

= i • ix - 2J- - -jj-+ 5T + 5i 
5  6 
—. •* t 7TV* "•* C • • • •  sat 

2   k        6 
n   X   X   X 1 ° 2T + 57 ~ 57 +,,° + i 

x^  x5 
x " 3T" 5T+ '•' 

ix The first term on the expansion of e  is the series for cos x while the 



expression la the second bracket Is the series fcr sin x*    Hence ve hsvc 

ix e  « cos x + 1 sin x . 

For the case when u 1 x A is the only component of tba 1'orce systaa 

and h  » jf « 0 , the solution, as we have seen, Is of the form 

iitt(l + o)t iiO(l - a)t 
TJ • K.e 

h&z us write this as 

(6) ,J^t + j^im* 

(6.1) 

and let us also assume for sltnplielty that K, and K^ are both reai.. 

Since a is the real part of r; and n the imaginary part of q, then in 

ix 
view of the interpretation of e , (6) may be written as; 

/m « K, cos axt + 

{ n • K, sin (tt.t • 

K2 cos os^t 

K„ sin «a^t I- - -1 — V 
Consider an epicyclic motion of the following character. Let there be 

a circle of radius JL.  as ahoim in Figure 5 »"* let • point P move on it with 

a constant angular velocity Ok* With P as a moving center, let there be 

another circle of radius X- and a point, Q, moving on it with a constant 

angular velocity a. • 

- 

Figure 3 

9 
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If 6-'•* 0 is the axis of m's and 0 • */2 is the axis of n's, we have 
for m and n at any time t, 

aeK, cos <xut  + K_ cos COK* 

n » K_ sin to, t + Kg sin Ogt . 

But this is the same as given by (6.1) and the result establishes the 
cpicycllc cliwhwWr of tbe motion given in (6). 

In cases of practical interest, neither a nor f  is y.«ro? Let us 

rewrite P. and P0 of (5) as 

pi"11 fn (1 + ff>dt + i ) u '6/o) dt 

P2 - 1 | f a (1 - o)dt + | ( (Jf - a/o) dt . 

The first parts of P, and Vf  are imaginary and the second parts are 

real.  In view of the fact that a  is no longer taken as a constant, the 

angular velocities m. and to-  are no longer constant* The real second 

parts indicate that the ssplitudcj ars no los^r either. 

So, in place of (6.1), we write 

n 

{       fir ~I n f i>     r, f "*! 
-.jKjCos j£}a(l+0)dt     + Kgcos     | I Q(i-o)dt j 't expl £ I (jf-&/o)dt 

- jltjSin   |Jo(l+o)at j  -r KgSin     | ( a(l-e)dt    I exp | | f (MM**      • 

10 
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Chapter II 

Equations of Motion with a Spinning Coordinate System. 
The Spins Caused by the Cross Wind Force, the Magnus Force and Gravity* 

The gp<»-«"',iwg Coordinate System 

In the preceding, ve have follow, i the methods of Fowler, Gallop, 
Lock, and Richmond Is deriving equations (**.l) and (U.5) and the methods 
J>~-\ 1  ~_J V.. 1f.11..,  ..—^ M^C'k«.~»5 4» A««J»4<i« •» V—  a«l«*4<M>     Vte *——*.* — _ 

the motion in the presence of a cross wind force, and other forces trans- 
verse to the trajectory, we depart from Fowler, Gallop, lock and Richmond, 
and adopt a coordinate system which is attached to the actual trajectory* 
Art  In Chapter I, the unit vector, i, points along the trajectory, the unit 
vector, J, is initially in a vertical place through the trajectory, and 
the unit vector, k, is initially horizontal.* 

As a result of the cross wind force and other forces having components 
transverse to the trajectory, our coordinate system will have a component 
of spin, a, about some axis transverse to the trajectory but no spin about 
the trajectory. By virtue of the spin, the coordinate system will not be 
a Galilean one. tfe proceed to derive first n and then Lhe equations of 
motion in this spinning non-Galilean coordinate system* 

Consider a body of mass, m, moving with velocity, v, in the direction 
indicated by the unit vector, T. Its vector momentum is evidently mvr. 
The rate of change of momentum or the vector force is made up of two 
components, ravr and mvT. The first component, parallel to T, is the sum 
of the drag and the tangential corarponent of the force of gravity, while 
the Second cogspOiient is a force perpendicular to T.  This 1B apparent 
since T is a unit vector and the only possible change in T is a change 
in direction. See Figure h. 

1 
Figure k 

If we designate the vector force perpendicular to T by F , ve have 

mv 

The deviation of k from the horizontal direction and J from the vertical 
plane will be discusse^.lnJ Chapter.^ It will be shown that these deviations 
are small. 

11 



Thus, the angular velocity of the trajectory, a, is equsl in magnitude to 

F n 
mv 

As a vector, it.must be perpendicular to T and also T. Hence> the 

spin of our coordinate system, IO»TXT»T!!— . 
v, n p 

It is apparent that —- may b» replaced by —- , where P is the 

resultant force on the shell, since the tangential eonmrment of ? sstess 

no contribution to the vector product. 

In the future, we shall replace T by 1 since by definition, 1 is the 
unit vector pointing along the trajectory* So that 

(7) o.ixi»ix| . v" mv 

Proa page 2, we have as the equation of motion 

(1) am. + Aiwv + a (A x AJ- G . 

K 

The superscript • indicates time derivatives in a Galilean coordinate 
system. If superscript primes indicate time derivatives in our chosen 

coordinate system, the Job i6 to express N. A and A in terms of N* . 
A' , A " oxiU CM. 

As the first step, we state the following theorem: 

|7»i)        r0 - p„« + arx r. 

»'  u. 

/ 

^X 

p 

Figure 5 

In this, p' is the rate of change of the vector, r. as measured in 

space 1 (non-Galilean) with axes x., y1, z..    Suppose this space is 

spinning with respect to Galilean space, 2, with an angular velocity, CD, 

as indicated. It is apparent that the velocity in space 2 of the point 
P at the end of r caused by the spin ©., will bs a x r.  It may be 

12 
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• 

rigorously shown that the rat* of change of r in space a, L , is to be 

obtained by adding this term to r' • Hence, since space 2 is Galilean, 

r2 » r*  + o> x r, . 
## 

rYom this theorem, it follows directly that A * A' + o> x A and by a 
second application that 

A" + a x A' + as' x A + CD x A' + CD x J~» x AJ » A* 

A" + 2 a> x A* + a>' x A + » XtXA] 
Although © has no component about the trajectory, it does have a 

component CD sin 5 about the axis of the shell, which makes an angle & 
irith the tangent to the trajectory- We shall neglect a> sin 6 in compar- 
ison with N. S6 we take the spin N unchanged in our coordinate system. 

Upon making tha substitutions indicated above in (l), we obtain 

AN'A + AWk* + AN» x A 

/ r- x XI     -ri 
(1.02) + B<A x A"+ [A x [«• x A]~| + 2|A X fix A*"] ! 

I     III      \ 

To simplify this result, we make use of a theorem of vector analysis, 

[Xx [B x Cj I = B (A*C) - C (AfB) . 

For the two triple and one quadruple products indicated by the 
superscripts I, II and III, respectively, we obtain 

« »'(AtA) - ACA*®1) - «« - (A*eo»)A (I) I A x |o* x A"1 

(II) 2|A x r® x A1"!"] « 2to (A'A') - 2A' (A'») 

(III) I A x [a> x Tco x AJ~|j - <B(A'|CD XA"|) - jco x A~j (A««) 

In treating the term (A'OD'JA of I, we consider two cases* Ttie first 
case is the one where CD arises from aerodynamic forces and is therefore 
proportional to o. Since in the final A, we consider only the J and k 
components which are themselves proportional to 5, it is apparent that, 
*Ifce use of the superscript dot is appropriate since space 2 is Gallleau. 
~ "The name Coriolis is associated with a similar transformation- See 

"Classical )yibchaiiiesf,, pp. 136-157, by Goldstein. 
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for this case, (A*®:
)A is at least of order 88° and may be neglected ia 

this first order theory •> In the second case, m arises from gravity asi 
an and •* are always perpendicular to the particle trajectory; to the 
actual trajectory, they will he so nearly perpendicular th&£ ths product 
(A*®') will be of the order 8 and (A»®')A of the order of 8< This also 
is neglected. 

1st II, since A is a unit vector, A' is necessarily perpendicular to 
A* Eence, the scalar product (A* A') = 0* The spin w is perpendicular 
to 1, hence, the product (A*») is at least of the order 8 and A' is of 
the order ft*. T^M» AYnrBsainti -2*,'f.A,2^ is at issjst of the order 55' snd 
is thus omitted in this small yaw theory. 

±ii  in, one »caa.ar product vA* i® x A i )  =» u, since j ® x A l is per- 
pendicular to A. *~   -1 

In view of these considerations, (1*02) may be written 

(1.03) AN'A + A8h°  + AN fa x A~J 

\    A x A** j + ®c - j® x Aj (A*®) f • G B 

If the spin & is caused by aerodynamic forces, ® will be proportional to 8 

PI 2 and the term I® x A  j {A*®) will be at least of the order 8   and thus may 
be neglected. 

W© proceed to ccapute tie spins, © , ca^, and ®   caused by the cross 

wind force, the Magnus force and gravity, respectively, thus obtaining 
the resuit»urtt  anin m« m    -f ®.   -f ®    • 

i\ A g 

The Cross Wind, Force 
# 

rae cross wind force, L , is defined to be a force which acts per- 
pendicularly to the trajectory in the plane of the yaw. For this treat- 
•ssntfiaSs further assumed to be proportional to sin 8* So we take 

L « A sin 8, 

and call A the crosf. wind force co-factor. ;/        (A- Cosoi) 

Consider now the vector difference 

(A - cos 8 i); (see Figure 6).      \—Cos € 

Figure 6 

*In ballistics, we write 

L m X_ p d u ein 8. (See Hayes9 Elements of Ordnance-, p. kl2)> 

Ik 



It is obvious that (A - cos 5 l) huB the magnitude sin b and that it is 
perpendicular to the trajectory, the direction of which is i. Accordingly, 
a correct vector representation of the cross wind force is 

>. (A - cos 5»i) . 

Froiii (?) it  appears that the spin © , of the coordinate system, 
caused by the cross wind force, is 

f •» 

4    * (A - coe 6 i)      A i, _ .    ..   » n    r\ L 

mv 

r-     "i    __ 

LlxAJ* s-krLlxAJ- 
•\ T 

Upon replacing — or   ",    J by ic, we have for the spin GO caused * * ° mv   mv sin ft * ' *        K 

by the cross wind force, 

T   "I 
oo^ = ft | i x A I » 

Magnus Force 

The Magnus force is a force which arises from the interaction of the 
boundary layer of a spinning shell and the wind stream when the shell has 
an angle of yaw. Consider a tennis ball or a baseball under the conditions 
shewn in Figurs 7» As a result of the interaction between the wind stream 
and the boundary layer, the velocity at the top surface of the ball will be 

Direction of spin ^ 

wind velocity 

Figure 7 

less than the velocity on the bottom surface* of the bell. Associated with 
this will be a higher pressure over the top thu;a. thex*e is on the bottom 
producing a force which accelerates the ball in » downward direction. This 
is what happens when a tennis b&LL is given a top spin. 

Consider a shell spinning as showu in Figure 8. As a result of the 

A 
>- V^^—>- i 

MofniS   fe."ce 

Figm 

V 

' 
7 

. 
Sj 

spin of sh*// 



pressure distribution mentioned, thers vill be a Magaus force> K, acting 
perpendicular to the plnae of the yaw, as indicated, which should be 
approximately proportional to the spin, K, the velocity of the shell, v, 
and to the sine of the angle of yaw, 8. If the factor of proportionality 
is represented by fm, we may write 

K K -  fmvN sin 6 (in magnitude) 

and by 

fmvN J A x i I as a vector. 

X     We shall represent fN in the above by X and call X** the Magnus for^e 
damping factor* The contribution to i caused by K is th»Y^»fore 

mv      ALT   J 

The spin QL caused by the Magnus force is 

ilii ! - A j 1 X [A X f] I . 

g      The force of gravity is numerically equal to mg where g is the 
acceleration caused by gravity* This force has a component perpendicular 

6     to the trajectory equal in magnitude to mg cos 0, where d  in the inclina- 
tion of the trajectory to the horizontal. Therefore, in our coordinate 
system, the component perpendicular to the trajectory will be represented 
oy 

- mg cos 9  J 

It follows from (7) that the spin m .  caused by gravity, will be 
g 

ix   (-6 cos 6 j) m e, k 

M        «t  - n«g cos 6 since 6*  « —=a . 

The Resultant Spin of the Coordinate System 

The spins caused by the cross wind force, the Magnus fores «ud gravity 
h&c rCopoCv«a.V£Ay ? 

a> BicixA; , 

f8) <    c^ • X i x (A x i] , 

a> m 0%  k 
vIn ballistic notation, w* write, Magnus foree-K-K-^pd Nv sin &(in magnitude). 

'"The  damping factor X is to be distinguished from the crcsswind fore© co- 
i factor X. 

W M M 

In view of the small rotation of our system about the trajectory, the 
component of the gravity force will not be extictly represented by - mg cos 0$. 

Shere will, in general, be a smell k ccsuponent. 
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Chapter III 

Ths  Yavlng Moment Due to Yawing. 
'fhe Magnus Mossnt. 

The Equation for the Complex Yaw* 

We have so far considered the following elements of the force system: 

Drag 
Overturning Couple 
Mel  Cw"*l>lfi 

Cross Wind Force 
Maguus Force 
Gravity 

The last three forces contribute to the spin of the trajectory and, 
hence, to the spin of our coordinate system* In this chapter, ve consider 
the yavlng moment due to yawing and the Magnus moment, and derive the 
equation f >r the complex yaw. 

Yawing moment due to yawing 

# 
H     The yawing moment due to yawing, designated by Hw , is the moment 

which opposes the angular velocity of the axis of the shell* 

h    We define a yawing moment due to yawing damping factor, h, by writing 

Hw • • h Bw • 

As ve have seen in Chapter I (p<5«e 2), the angulsr velocity of the axis of 

the shell w may be expressed as (A x A). Thus, if we are to take account 
of this moment, we include on the right hand of equation (1*03) on page lU, 

- h B (A x A) 

in addition to the overturning moment, u 11 x A I, and the axial couple, 
-AN PA. U

  
J 

As has been mentioned, A is the angular velocity referred to Galilean 
axes, whereas, in this problem, we refer the motion to axes turning with 
the trajectory* We thus have to express A i« terms of A* and tb.v resultant 
angular velocity of the trajectory, <g»    As we have seen in Chapter II, A is 
equal to A' + m x A.  and thus 

AxA-AxA' + A x [• x A j « 

As we have also seen in Chapter II, the triple product A x j m x A   i may be 
expressed as « - (« - A)A*-   Hence — ~ 

"^.fe XAI- -hBllA XAG   ie - (• • A>A }   . 
•In ballistic notation, Br is expressed by , * 

Kg p d   vw 

in which Kg is the yawing soment due to yawing coefficient and w is the 

vector angular velocity of the axis of the shell. 
17 



The term (a * A)A will "be oailtted since it is of the order S in the 
2  and k components. Thus we have, including the moments so far considered, 
for the right hand side of (l.Oj), 

i H I i x A  - AH pA - hB < IA x A'  + oa > 

Magnus Moment 

On page 15, it appeared that the vector Magnus force is proportional 
to A x !• Ttoe masrmnt.  of this force is perpendicular to the force aiw. %o 
the axis of the shell and is therefore properly given as proportional to 

r~  —i 
A x | A x 1 I . We assume a proportionality f so tor cf AEy,  wue» j  is the 

Magnus moraeirt damping factor, and write the Magnus moment, 

J* » AN7 [A x IA x ±2   \  . 
1— -H 

This term is to be added to the right hand of equation (l>03) in addition 
to the ssossests ssatioasd above* 

While it is commonly assumed in the small yaw theory that the Magnus 
force and moment are strictly proportional to the spin, there is little 
experimental evidence to back up this assumption. What evidence there is 
indicates that the force and moment are not exactly proportional to the spin. 
On the other hand, the evidence indicates that the Magnus force and moment 
are proportional to B for small yaws. 

Including all the moments so far considered, the right hand side of 
(1.05) is 

M r*:'xA"l - ^HA - hB j [A XA'1+ »/ + AHr JA X[A x ij   |   . 

If the term - ANpA is cancelled against AN'A, (1*03), see psgs Ik, 
becomes «. 

(1,04) AN(A* +| a> x A  j) + B-f |A x A" j4 «s   - (A * aft) JJD x A J f   - 

- ti Ti x A*1- hB T |A x A' "J + at + AH?   A x [7. x il   | 

with the spin; mf as given in equation (7) of Chapter II by 

a> « itfi x A~|+ A   i xTk x ll    + 8* k . 

We are to expand (1*0V) in terms cf the j ac£ k components, the compon- 
ents of the complex yaw, and omit ths= i ccs^onents, if any, since in this 
small yaw theory, / - 1. 

*ixx ballistic notation, we write J * Kjp d   fi v sin 6 (in aagaitsdcO. 
I 

i. 
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Before carrying out this expansion, it is convenient tc espsnd the 
vectors and the vector products i*a (l.o4),« 

For mf  on carrying out the indicated vector multiplications, ws find 
with     , 

A • jf i + fflj + nk, 

st = (=«n -r >«}J + (wa + Xn + 0*)* • 

If the J and k conpoaants of the vectors and vector products in (1.04) 
are Indicated by the notation (  ).    ». we have 

(A*)« fc - m
: j + nsk 

if > — 

(txA). V • (wa + to + 9')J + (an - ?s)k . 

With the usual approximations. 

fA x A'4 .     _ • -n»»    1 + a" k 
 J, k   -••-•-- 

(•*)«    V "" v-*0' + to1)* + (wa1 + to' + 8t5)k • 

In treating the term (a * A) |«p x A | we need to include in m only the 
term $'•»; since • will \m proportional to 5 for the other components and the 

2 
tern itself will be of the order o for thees components»<.; .. 

With « - e'k, 
S 

On the right hand side of (1.04). 

nk , ([*»AJ)I. *-••»• 

(A "i A x i ! I , . » a * -!• nk * 

Using thes« expression* for the vectors and vector products in (i.Cw), 

AM dividing both ftidas by B, expressing the quotient -«• by Sif  «nd collecting 
the terms is ••  and k# respectively, we obtain 

&0&* +iem + >?:. + 3') - n" + (-im' + Tan') - n0'    « - £ n + hn* + hien - htan-QTK* 
o 

) 
oCn'+icn m >ju)+ mM • («m* + >ai* * 69) » ^ « - hm'-hitm - Wm - h©' + Oyn . 

••-•   •••-,•,  :•- ••:«-.-.    .-,•*?•,.•,*. .v•- ^ 



We multiply the first of these equations by -i » -*f-l sod add to the 
second with the result: 

fi Q im» + n' - K  (iin - n) + X(-m - in) - i ej 

•r ni" + in" -.•  s(m' + in0) - *(im' - n°) + in0°2 + 9M = 

- | (m + in)  - h(in' + in0)- hn(m + in) + h ~h(iM - n)  - ha"  - fty{im - n)  . 

Replacing (m + in) by TJ, the complex yaw, as in Chapter I, and arranging 
"Cue   t-rzjnwa.   we   xmve 

TJro +   KTJ°   -  lto/   '  lOll?   -   liters 

-IIXTI - I n + hn8 + hi^ - ihAt) + ifiyn - 100°  - 000 - in8°2 - hS° 

or 

(l.j06)       Ti00 - i(fl + iK + ih + *)TJ°  -   I + Mic + AX - ifl7 - hn + ibA ji 

- IQO°     s!"    in e°2 - he' 

in p. **£ + i (e-^'H; 
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Chapter IV 

The Solutions of tire Equation for the Complex Yaw, Stability* 

In this chapter, we derive the solutions of the equation for the complex 
yaw (l«06). We first consider a particular solution cf the equation* We 
insert the particular solution in the equation and subtract the resulting 
equation from vl»06)« By so doing, vs get as huwogsseous equation* 

The Particular Solution 

We proceed with the derivation of the particular solution and shall 
consider later the solutions Of the homogeneous equation. 

Following Keiiey and McShane, let us write (l*0o) in the form 

(li07) TJ" + atj* -r hr, - c . 

Assume a solution of the form 

n - f + « , 
on the assumption that the i\n and n' terms are relatively small* On Inserting 
the solution in (1*07) sad rssglectieg r?" and e'. one finds 

a / c * 

and 

(9) 

In terms of the notation of equatloa (1*06) this gives 

iAN fll  ne'2  iCe" + hd1)      IAN J    IAHI -,  nfi'2  i(g* + hg«)  I 

If eH but the leading term la 'a* and 'p' of equation (l.p^) are ignored * 
•Valuec of terms In 'a' and ,b' for the 37mm H.E. Shell M5& al" a velocity o 
2000 ft/sec and a twist of rifling of 1 in 50: 

» 

of" 

ft 5Q°o rad/se<3 
R I.39 sec "*" 

h 5.51 sec"1 

X 0*52 aec"J 

u 1017 lb.ft2/see2 

tys 52,000 sec"2 

ft ic 819 sec"2 

7 -2.06 sec" 
ft 7 -1212 sec"2 
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• 

12      ' *      ' 
If n© , 5 . and h<9 in the first bracket, on the right are neglected 

and the second term, is neglected entirely. (9) •becomes 

(9*D 
u ~ v 

In visv of the fact that the z axis is the axis or imaginarles, ($•!) 
indicates, on this approximation, that (a) the projectile is pointing 
directly to the right, and (b) the magnitude of the yav is given by 

m4m  fc  AH g cos 6 
(I     V 

The preceding is therefore a derivation of the result given In Hayes,, 
Chapter X, p. <tex>. Essentially, this expression for what is called the 
"yav of repose" vas used by Fowler, Gallop, Lock and Richmond in predicting 
the "right drift" of a projectile Kith a satisfactory sgrss&eul with experi- 
ment. 

Solutions for the Homogeneous Equation 

As vas pointed out, if we subtract the special solution (9) from (1*06), 
we get the follmring hessogeneous equation, 

(10) TJ" - i(ft + isc -v ih + 70V - j^/B + ifl(t* - y  - iX) - hK + ihXJr, = 0 . 

As in Chapter I, we write (10) in the form 

ij" - lEn' - Fn = 0 

and make the transformation 

ti«yexj?||i\Edt 

obtaining "••*      — 

y«+ ( » - F + |i s')y - o . 

Upon inserting the values of E and F from (10), this becomes 

Sp - | + | (~iK + ih + 2iy - X) + | hK + 

| i(idv + hK)  - | (K2 + h2 - *2) + y" + 

| i(fl« + IK' + ih1 + A') 

If we neglect the products and squares of the damping factors and also 
their derivatives and write 

fl« $o.-Xo. 

§ 



I 

the coefficient of y in (ll) becoaes 

i. - g + S (b - « • 27 - t) - I * • 
In visv of the fact that 

this may he written ._ 

(12) (§ of  |jL + ^2 (h - R + 27 - 0 - ^2 J . 

This quantity (12) is -q of equation (U.6), page 6*   Upon taking the 
square root* of the bracket by the aid of the binomial theorem, i.e., 

= 1 + ?r x + ••* 

and throwing away terms of higher degree than the first in x, we obtain 

+ q« + |iJfto + i(a-K + 27- I)/a  - V* ) 

- q « - I i |0c + i(h-ie + 27- ()/o  - V* J • 

In taking the derivative q . we consider only the time derivatives of 
ft and a and neglect the others. Thue,  as before (see page 7), 

. _a c * it. i) . 
2q  2 s*  0' 

•Following a suggestion of O.K. Murphy (BHL Technical Rote 705), we may 
replace the bracket of (12) by 

\r + mt  . 
If now we place 

a + ib - "|jp + iQ , 

a2 - b2 « P, 2ab » Q . 

According to the approximation by the binomial theorem, 

while, according to the above exact relations, the first term should not be 

^P but approximately~yP "Ml + . 2 . On the other hand, the second of 

these relations is fulfilled by the approximation of the binomial theorem. 
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Hence, the solution for y is 

tf 
(13)   y = yx ex? I i fjfio - I •  ip!h . < + 27 - ft/o - ( + fj j dt 

iiHO(T--+i(h«x 
J( • L 

where y. and y? are complex constants. 

y_ exD1 
-*  - j  ^ 

') 

If ve write this as 

yA     4- "V flft 
1     "fg** 

then, in view of the fact that 

il « y exp 

E m  (n + iK + ih + X), 
and that 

we have for n. 

I i I E dt 
o 

(1*) t) * K. exp 1    ,* "1 I i J (n + ih ^ i* + X) dt + ^ j + 

Kg exp I i f   (0 + ih + ±K  + X) dt + % 

where K. and iC are complex constants. 

Finally we write 

(U.l) 

U 

P     P 1  -_- _ 2 4 i^e n - I^e 

From (14) and (lU.l), it is seen that 

(15) P, = 5 f «/ i jn(l + a) + X - X/'ffJ - I h 

t,' 
- I / j i I 0(1 - o) + X + X/o - h 

+ K 

+ K 

-17 
jf -r a/a + (h - K  + 27 -jf)/cr |>dt, 

II -ft 
(  + ^ - (h - K + 27 - /)/0 *? dt. *IJ 

Since the s+.Ability factor is assumed to be appreciably greater than 1, 
the terse in X are negligible compared to those in ft*. Hereafter, X will be 
*E.g*, for the 20mm Practice Projectile T114 fired at a muzzle velocity of 
3026 ft/sec with a twist of rifling of one turn in 25»4 calibers, 

fl m 1525 rad/sec; 

X •       0-2 sec"      (approximately). 

f 
f 
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• .ft 
I 
-' 
I 
i 

(15.1) 

P.,  = §    ]" /m(l + <r) - |h + K - /; + or/a + (h - »c + 2y - /)/a] [ dt, 

The General Solution 

If the particular 8olution (9) is represented by c -r id where c and d 
are "hot'a real, then the general solution (the StS? of the particular solution 
and tee solutions or toe Homogeneous equation) Is 

Pl F2 rt » K, e      +Le      + c + id . 

It the initial value of r, is n . ate.. the constants K, snd KL must 

satisfy the conditions: 

n»JL+K2+c_ + id. o 

1 - «1 Pi,0 + *2 %0 + Co * id, 

Stability conditions for spinning shell 
 11 111    1 '••    •  11       1 • • HI      T 1 1 I>I 1 

As we have seen in Chapter I, the imaginary parts of P. and P determine 

tbe frequency or angular velocity of the motion while the real pasta control 
the amplitude. 

A shell is ordinarily said to be dynamically stable if the amplitudes of 
both motions diminish with time* Thus, obviously, the conditions for this 
sort of dyrmmic stability are that the real part*, of P, and Pp must be nega- 

tive. Hovever. in such a treatment of the dynamical stability of shell, no 
attention is paid to the variation of these factors with velocity ana, as a 
•.rule, the factors vary considerably as the velocity changes. It viii be 
noticed that the amplitude depends not on the integrands involved in P, and 

Pp but on the integrals. Therefore, the integrand may be positive over 

certain parts of the velocity interval considered vhile the integral may be 
negative. It is apparent that the integrand itself should be nagagive at 
the muzzle velocity at which the shell is fired because, if it is pot. the 
large amplitudes might develop before the integral becomes negative once 
more. Thus, practically considered, there are two factors tb*t have to be 
considered in designing a shell: (l) the iiitegrat\d of the real parts in P1 

and Pg should be negative in the neighborhood of the muzzle velocity, but,(2) 



en the other nand, if the integrands are reasonably negative in the neighbor- 
hood of the muzzle velocity, it is not essential that they he negative at all 
other velocities which the shell assumes on its trajectory*    It is known 
that there are quite a number of shell which, in the narrow sense of the 
word, are dynamically unstable on certain pax to of their trajectories hut 
nevertheless are exceedingly accurate. It would be throwing away many perfectly 
good shell designs if one insisted that the integrand be negative at- all ve- 
locities which the shell takes on during its trajectory* 

If c is real, the four conditions for the satisfactory lamping of the 
yaw of a shell on a given trajectory are: 

near the muzzle 

(a) Ih + R - i + b/a + (h - R + 27 - I) fa  |^ 0 

(b) |h + K - f + b/a  - (h - K + 27 - O/o   J. 0 

along the trajectory 

(c) f \ h + R - I + b/a + (h - K + 27 - ()/a  | 

"° I- -4 

(*) /[* + 

dt 

(dynamically stable) 

K - I + a/a  - (h - R + 27 - jf)/i a  }dt 
1 

0 , 

(not necessarily 
dynamioally stable 
at all points on 
the trajectory) 

when t is any tlaae along the trajectory . 

Ae Murphy suggests in BRL Report 853, for practical purposes, the 0*8 
on the right of ihe above inequalities might well be replaced by positive 
constants* 

As S'ier^e and Poor have pointed out, it may be dangerous to design ». 
weapon ior which all four stability conditions are satisfied only i/hen 
the shell it» fired for a certain muzzle velocity. If the muzzle 
velocity were inadvertently changed, the conditions 
no longer be satisfied. 

'a' and 'b* might 

?6 



Chapter V 

The Motion of the Coordinate System. 
Comparison with Fowler, Gallop, Lock and Richmond. 

Comparison with Kelley and McShane. 
Neglected Forces. 
Acknowledgments.          

The Motion of the Coordinate System 

As compared with the coordinate system or Fouler, Gallop, Lock and 
Richmond, which is attached to the particle trajectory, oars has the 
advantage that it deals with only one vector. A. Instead of two, A and X 
(see below). As compared with that of Keliey and MsShane*,, it has the 
advantage of resembling more closely a Galilean system than one whose 
coordinates oscillate with the projectile. Howe-rex-, our coordinate 
system has the disadvantage that the z axis, originally assessed to be 
horizontal, will not, in general, remain horizontal, and the y axis, 
originally in a vertical plane: through the trajectory, will not, in 
general, remain in that plane. However, it will be shown tnat the departure 
of the z axis from the horizontal will bo small and the departure of the y 
axis from the vertical plane will be also. 

Consider a projectile moving vertically upv&rd* Let us taite the y axis 
initially as coming out of the plane 

x 

Figure 9 

of Figure 9 end the z axis as pointing to the right. Suppose there is a 
spin a>   of the coordinate system about the y axis, then the z axis will 

turn toward the vertical with the same angular velocity a> • Place a vertical 

plane so that it will include the z axis and let • be the angle, measured in 
that plane between a horizontal line and the z axis* In this case, • = <D • 

Let us consider the "eneral case* SiT**,,*ose the tsnssnt to the tr°Sector"" 
makes an angle d with the horizontal, let the z axis point initially directly 
to the right and let the y axis be initially in the vertical plane thru the 
x axis. See Figure 10. 

Keliey and McShane have adopted the coordinate system of Nielsen and Synge. 
Cf. "On the Motion of a Spinning Shell7 Quarterly of Applied Mathematics, 
Vol. IV, No. 3, October 19**6, pp. 201-226. 

27 



: 

#-Z 

Kiciiro   10 

It appears that the component of a>   about an horizontal normal to the 
y 

initial direction of the z tali* will h« m «in S-.    So, in general, 
y 

• = a sin f)  . 

It is atmarsnt that a rotation g>   about the z axis, if z is horizontal, 

will not mcr?e the y axis f xaa. the vortical. 

On the other hand, if the % axis is not horizontal, a rotation about it, 
A . viii cause the y axis to leave the vertical plane through the trajectory. 

However, <t> is approximately proportional too ss long as 4> in email'. Thus, 

the departure of the y axis from the vertical will be approximately proportional 
to the product CD *» and will be neglected, 

y z °^ 

It is obvious that a rotation about; the y axis will not change the 
direction of the y axis* 

It thus appears that the rate of departure of the z  axis from the hori- 
zontal is given by * = © sin 5, and that ths rate of departure of the y axis 

will be cf higher order in the spins of the trajectory; 

The spin of the coordinate system caused by gravity, <o , has no component 

in cp1 . The main component of a> is that caused by the cross wind force, in 

magnitude, - KT|. 

With an assumed value of R « 1.0, Hitchcock and Harrington have computed 

U) i U  dt _ far dt 
*!** *f 9 Bta 8 '     Bin 6 

for two cases, one where the motion is undamped (with damping due to K neg- 
lected) and one where the motion is damped with h • 3.2 and K *  1.0* This 
was for a 3.3" shell with a velocity of 208o ft/sec. The results were that, 
at the end of .6 see*, the maximum value of   »  for the undamped case 

sin 6 
was less thai* .003 ?&&>  &&& less than .002 rad for the damped case. 
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Co»?r^rl3oa with ^=^^Lta  of FSLR 
> 

Fowler and associates refer the motion to a coordinate system attached 
to the particle trajectory with only drag and gravity acting on the particle. 
In this system, they consider two vectors. One which we shall call A- is 

the unit vector having the direction of the axis of the shell; the other. x, 
s, unit vector having the direction of the actual trajectory, both referred to 
the coordinate system mentioned. 

Fowler writes 

^ « VF + VF 
+ VF 

X » x£_, + yj._, + *k_ .   (x,y,z are direction cosines.) 

If we define the vector yew indicated by Za as the component of the 
vector A- normal to the actual trajectory, then with the coordinate system 

of FGLR, 

A, - Ay - X = (m_ - y)jp + (np - z)}^ 

since Jt <3g x #B 1 * 

[ 
On the other hand, the vector representation of our complex yaw is 

(mj + nk). Hence, if the small angles between our and their coordinate 
axes may be disregarded, i.e., if J_ • j, kp » itj.-ffi == su «• y, n « n„ - z . 

S 
FGLR introduce two complex variables in their treatment, r\  and £ • The 

definitions of these variables are es follows: 

T) + c £ * 12^ + inj, , c g m y + is 

where c • cos 0. 

From these, it is seen that 

H - (aij, - y) + ifrij, - z) , 

i 
and Fowler's r, is equivalent to our TJ, except for the slight difference 
between our axes and his. 

On page 337, FGLR give, with slight changes in notation, the following 
equations involving TJ and £ . 

(3*613) T)» -(ift-h-ic+i>v)Ti»-<(|^ +ift(ic«i7v-7)->i!e+-ShX-icf + IV -(K»1?0 ^ f n 

- jj.Qc»  - he* - cr   I £ - Id m m{e< + 19&Q)    . 

* Where Q    is the inclination of tba particle-trejectory« 

29 
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• 

This is to be compered with cur equation (1«06) on page 20. The differences 
are as follows; 

a* FGLR have two terms in r,r -(*' - 1?\')TI 
and + (* - iX) •— »J 

I 
i]. 

b, Hwy have a £ term which they later discard as being of the 
i 

c. On the right haad side, we have two terms in the bracket of (1.06) 

P 
ner~    „   ih0» 

which Fowler considers negligible, 

FGLR give as the solution (p. 339) for the simplified homogeneous 
equation in r\.  with a alight change of form, 

(3.623*)    1- (r?" j     "ie + Vs 

,  t  / -- —, ^ 

1   2   2 o (      "      L      - _j; 
and K. and K_ are arbitrary constants* 

It way be shown that 

fa*)"1—L}f«-*- 
• -* 

I 

In view of this, (3.623k) may be written 

pi pp 
r\ « KjB x + Kge * 

with the P's now defined by 

P 'l' P2 = I J YLfl<1 ± •)  "p +K-Jt + |t (fe-K + 27~ /)/©! t   dt . 

This is to be compared with (15.1) on page 25. It will be seen that 
the results are identical: 

Another cossaant on Fowler's treatment: he claims his result to be 
valid oaiy for large values of Sj our results indicate that his results 
are of greater generality than he realized. In fact, they merely depend 

1 I 
1 30 



on the u'sxisl W.K.B. approximations (see p. o) . 

! 

Comparison vith Kelley-McShane 

Kelley-McShane use the arc length as the independent variable, instead 
of the time. Dr. Galbraith has kindly transicrr^d Kelley-McShane - s equation 
(1.25). BRL Report KUb;  to its equivalent with time as the independent variable- 
The result, with our notation .tor the damping factors, is: 

n - in(ft + lie + ih + -K + * ) - T) ("l + IO(K - 7 - IX) - i a&±^ e I 

- ia e» (i + | + ^) . e». 

*ln view of the fact that FGLR made their observations by~yawcards/they give, 
in addition to an expression for r^ths complex yaw, expressions for 62 and for 
•, the ecagle between a vertical plane through the trajectory and the plane of 
the yaw: 

5 • a sin qt + p cos" qt . 

1 f 1 
• ••_+* Ot + arctan «* coth (.1 - a,) tan ot V . 

O c L 3     " j 
In these, 

a • maximum yaw 

3 = minimum yaw 

q * £ far 

a - Je   cosh (qp - j) 

p * Je " sinh (r^ - j) 

tanh J = 0 /a 
o o 

J - ao/cosh j = 0o/sinh j 

o 

qg = , 2ff  •——••— -v 
o 

J      2c dt 
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If ttis is compared with (l?06) os page 20; it is apparent that, aside from 
the terms in $ which we xieglect, the only difference is the tens 

±2& 5aS S ia the coefficient of t). In view of the fact that this term is 
u 

omitted in ^Exterior Ballistics", by MeShejse,. aXeiley and Reno, it is apparent 
that Kelley and McShs.se consider it should he omJ, ti«d. 

Neglected Forces 

We have so far neglected three elsaente of the fores system because, 
in practice, the corresponding dealing f asters are negligible* These are: 

,.\12   »KTCC   N*"U^   i/C   yikVjkug, 

the Magnus force due to yawing, 

the Magnus moment due to yawing. 

force due fco yawing, 

The yawing moment due to yawirg is produced by she product of 
a force multiplied into the distance between the center of application of 
the ?orc? e»* ths center of gravity. This force is the force due to yawing* 
It is important in the motion oi dirigibles and of interest in developing a 
tneory of the yawing moment due to yawing. It has a negligible effect on 
the motion of ordinary shell. 

b- The Magnus force due to yawing 

Just as there is a Magnus force which corresponds to the cross 
wind force, so there is also a M&guus force du« to y&wisg. As a result of 
thus spin of a shell, the Magnus force due to yawing differs in magnitude and 
direction from the force due to yawing* This force is also negligibly small 
and need not be considered in the theory of damping* 

c. The Magnus moment due to yawing 

Corresponding to the yawing moment due to yawing, if the shell 
is spun, there will be a Magnus moment due to yawing but this Magnus moment 
is also negligibly small* 
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